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Evolution of semiclassical quantum states in phase space 

M V Berryt and N L BalazsS 
+ H H Wills Physics Laboratory, Bristol University, Tyndall Avenue, Bristol, BS8 lTL, UK 
$ State University of New York at Stony Brook, NY 11794, USA 

Received 14 September 1978 

Abstract. We derive a semiclassical formula for the Wigner function W(q ,  p ,  f) describing 
the evolution in the two-dimensional phase space q p  of a nonstationary quantum state 
$(q,  i )  for a system with one degree of freedom. The initial state $(q, 0) corresponds to a 
family of classical orbits represented by a curve V0 in q p .  Under the classical motion Vo 
evolves into a curve V,; we show that the region where W is large hugs V, in an adiabatic 
fashion, and that W has semiclassical oscillations depending only on the geometry of (e, and 
neighbouring curves. 

As t + CO, V, can get very complicated, and we classify its convolutions as ‘whorls’ and 
’tendrils’, associated respectively with stable and unstable classical motion. In these 
circumstances the quantum function W cannot resolve the details of V,, and at time f, there 
is a transition to new regimes, for which we make predictions about the morphology of $ 
from the way V, fills regions of phase space as t - r  CO. The regimes associated with whorls 
and tendrils are different. We expect f, = O(h-2’3) for whorls and I, = O(ln h-’) for tendrils. 

1. Introduction 

Even in one dimension it is far from trivial to get a clear picture of the time development 
of quantum states, especially if the Hamiltonian is nonstationary. Here we show that 
under semiclassical conditions a natural framework for such problems is the phase space 
of the classical motion, in which an easily visualised, explicit expression can be derived 
for the quantum-mechanical Wigner function. 

In 8 2 we set up the initial state 4(4 ,0 ;  P*) corresponding to an initial curve V o ( P * )  
of points in the phase space q, p ,  labelled by the value 9* of a parameter 9. In other 
words, we are considering a family of quantum states, each of which corresponds to a 
family of classical orbits. 

Then in P 3 we employ the time-dependent WKB method (Dirac 1947, Van Vleck 
1928) to express the evolving wavefunction 4(4 ,  t ;  9*) in terms of the curve %,(B*) that 
develops in phase space from Vo(B*) under the classical dynamics. This approximation 
for 4 has the well known deficiency that it breaks down at caustics (turning points) of the 
classical motion, where % is perpendicular to the q direction in phase space. 

This deficiency is remedied in § 4 by using the WKB expression for 4 to construct an 
approximation for Wigner’s function W(q,  p ,  t ;  P*) in phase space, employing a 
method developed by Berry (1977a) for studying stationary states. The resulting 
formula for W has the advantages of being manifestly symmetric in 4 and p (and so not 
failing on caustics in the 4 or p spaces) and also of depending only on the geometry of 
the classical curves %‘((PI. Our arguments here are similar in spirit to those developed 
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by Heller (1977); he considers a wider class of cases, but we get more information about 
the quantum oscillations of W. 

For a large class of Hamiltonians, almost all initial curves Wo(P) will develop as 
t += CO into curves %‘,(P) with infinitely complicated convolutions of two sorts, which we 
call ‘whorls’ and ‘tendrils’, related respectively to stable and unstable (stochastic) 
classical motion (reviewed by Berry 1978). Section 5 is devoted to a brief discussion of 
this asymptotic complication of %’. 

When %’ gets sufficiently complicated, W can no longer follow its details, and the 
quantum state $ must undergo a transition to a new regime whose nature depends on 
whether % grows whorls or tendrils as t + Co. Speculations about these transitions are 
presented in 0 6. We conjecture: 

( a )  there will be precursors of the transition in the form of proliferating cusp 
catastrophes of 4 ;  

( b )  the transition will occur at a time t,, where tc=O(h-2’3) for stable motion 
(whorls) and t, = O(ln h-’) for unstable motion (tendrils); 

(c) after the transition the local average of the probability density 1 $ 1 2 ,  and the 
spectrum of oscillations of +, will depend on how convolutions fill regions of phase space 
(i3erry 1977b), and this is different for whorls and tendrils; 

( d )  where the classical motion is unbounded, Wigner’s function W will eventually 
spread more slowly in phase space than %’ does, and this may explain some numerical 
results of Casati er a1 (1979) on the quantum pendulum. 

2. The initial state 

At t = 0 the quantum state $(q, 0; S*) will be taken to correspond to a curve W o ( P * )  in 
the phase space q, p .  It will prove convenient to embed $ and %’ in families 
parameterised by 9 (figure la). Then WO(P)  is defined by 

%‘o(P): F(q,  p ,  0 9 )  = 0,  (1) 

(01 ( b l  

Figure 1. Geometry relating to family of curves parameterised by B: (a )  the initial curve 
e,,(.+’*); ( b )  the evolving curve %,(9*). 
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where F is a family of functions of q and p .  Obviously there are many ways to embed the 
curve of interest, Uo(9* ) ,  in a one-parameter family of neighbouring curves. The 
choice of the particular family ( 1 )  is determined by the assumed distribution of classical 
points along the curves q0(9) as follows: Let Q be a coordinate along V (figure l a ) ,  
chosen so that the classical points on Y0(P) are distributed uniformly in Q; then Q will 
be considered as a new canonical coordinate in the phase space, and the parameter P 
will be taken as the conjugate momentum. The generator of this transformation is the 
action function So(4;  9), satisfying the relations (Synge 1960) 

4, P +So(q; P)+ Q, 9 

e = aso/aq, Q = aSo/aP. ( 2 )  
Contributions to the semiclassical wave $(q, 0; 9*) arise where the line with 

constant q intersects %‘o(P*); we label these intersections by an index (at the point q 
marked in figure l a ,  for example, j can take the values 1 or 2), and denote by Gj the 
contribution of the jth intersection to 4. Apart from a constant q5,, the phase of q, is 
simply h-l times the action 

where p ,  (q, 0; 9*) denotes the jth branch (figure l a )  of the inverse function cor- 
responding to ( l ) ,  expressing p in terms of q along the curve Uo(9* ) ,  and qo is a 
constant. Of course Soj in (3) is just one branch of the generating function So(q; 9)  of 
the canonical transformation (2). The modulus I$,l is obtained in terms of the strength 
of the projections of segments dQ, of % onto the segment dq (figure l a ) ,  using the fact 
that the density of points along V is uniform in 0. Thus 

(4) 

( 5 )  

Io dQ, = IrL,(q, 0; P*)12 d4 

1 ~ , 1 2  = Io dQ,/dq = Zo(a2so(q; p ) / a q  a 9 ) P = P * ,  

or 

where Io is a constant, and the second equation in (2) has been used. Combining these 
results, the initial semiclassical wave is 

This is a notoriously awkward expression, on account of the multivaluedness of the 
functions p(q, 0; 9) and So(q; 9) as embodied in the summations over I .  The multi- 
valuedness originates in the caustics or turning points 4( figure l a )  where V is 
perpendicular to the 4 direction and two branches j coalesce; typically 4, is a fold 
catastrophe of +b (Poston and Stewart 1978). At 4, it is geometrically obvious that 
dQ/dq diverges, and so the approximation ( 6 )  is no longer valid. Keller (1958) and 
Maslov (1972) have shown how these divergences connect the phases q$ in (6) .  The 
time-dependent version ( 6 ) ,  to be derived in the next section, will involve similar 
complications, but these will be eliminated in 0 4 when the branches of the semiclassical 
wavefunction are synthesised into a single Wigner function valid throughout phase 
space. 

The notation employed in this section can be illustrated by considering the parti- 
cular case (Berry 1977a) of a stationary bound state of a time-independent Hamiltonian 
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H. The curves % (which do not change with time) are just the contours H(q,  p )  =E.  
The energy E could be the parameter B of equation (1); alternatively, that role could 
be played by the action 

(7) 
2rr -, 

where 0 denotes the unit step function. The action 9 ( E )  is 1/2rr times the area 
enclosed by the curve ‘G that corresponds to E. When P ( E )  and not E is the parameter, 
the coordinate Q conjugate to P is the angle variable, and points distributed round ‘G 
uniformly in Q remain so as time proceeds (i.e. Q gives the invariant measure on 
%‘-see Appendix 26 of Arnol’d and Avez 1968), and the corresponding semiclassical 
wave (6) will indeed represent a stationary state. 

1 1 O t m  

9 ( E )  = $ p dq = - I j-, dq +@(E - H ( q ,  P I ) ,  

3. Evolution of the state 

Each point 4, p on the initial curve Vo(9*)  moves according to dynamics governed by 
the system’s Hamiltonian H(4,  p ,  t ) ,  so that at time t the curve has evolved into W t ( 9 * )  
(figure l b ) ,  also embedded in the family parameterised by 9 and defined by 

V,(P): F(4,  p ,  t ;  9) = 0 ,  (8) 

where F(4,  p ,  t ;  9) has evolved from F ( q ,  p ,  0; 9’) by the action of H(4 ,  p ,  t ) .  It is 
natural to ask: can the semiclassical wave $(q, f ;  P*), which has evolved out of (6), be 
expressed in terms of the curves V , ( P ) ?  

The answer is affirmative. To show this, we begin by writing the Schrodinger 
equation that $ must satisfy: 

H(q ,  -ih a/aq, t ) $  = ih ar/l/at. (9) 

A semiclassical solution of this equation, i.e. a solution correct to terms that do not 
vanish as h + 0 (Dirac 19471, shows that (1, is made up of contributions $, whose phases 
are h-’ times solutions of the Hamilton-Jacobi equation. Again it  is convenient to work 
with a family of solutions involving the parameter P and denoted by S ( q ,  t ;  9). Then 
the Hamilton-Jacobi equation is 

H(q ,  ask?, t ;  91/84, t )  = -dS(cl, t ;  9 ) l a t .  (10) 

The moduli 1$,1’ satisfy the continuity equation 

whose solution (Van Vleck 1928) can be expressed in terms of S as 

/$I’ = const x aZs(q, t ;  9 1 / 8 4  89. 

The semiclassical wave evolving out of (6) is therefore 
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where S, are branches of the solution of (10) whose initial value is (cf (3)) 

Sj(q, 0 ;  9) = Soj(q; 9) = 

It now remains to show how S thus defined depends on the curves %,(9). 
One technique not suitable for this purpose is the method of characteristics. This 

obscures the connection with the curves +?,(9) by expressing S in terms of the function 
@(t’ ;  q, t, 9). This gives that position cj (at time t‘) which will arrive at time t at the 
position q with momentum determined by the curve %‘,(9). The resulting solution of 
the Hamilton-Jacobi equation, satisfying the initial condition (14), is 

S(q, t ;  9) = SO(@(O; 4, t, 9); PI+ /‘df’L(q(tf ;  q, t, 91, s(t’, q, t, 91, f ’ ) ,  

where L(4, aq la t ‘ ,  t’) denotes the Lagrangian. 
However, this form of solution, involving the whole course of the trajectories over 

the time 0 to t, is unnecessarily complicated for our purposes. A much simpler 
expression for S exists, namely 

(15) acj 
0 

r 4  r ‘  

where p,(q, t ;  9) denotes the jth branch of the inverse function corresponding to (8), 
expressingp in terms of q along the curve %‘,(9), and qo is the constant appearing in (3). 
There is no dependence in (16) on the details of the trajectories between times 0 and t ;  
the first term depends only on the final curve V f ( 9 ) ,  and the second term involves only 
the time dependence of H at the fixed coordinate qo on the evolving curve %’, 

Clearly the expression (16) satisfies the boundary condition (14). We now show that 
it satisfies the Hamilton-Jacobi equation (10). For simplicity we omit the subscripts j 
and the parameter 9. First we note that (16) gives the expected result 

(17) as(% t)laq = p(q, t ) .  

Next we calculate the time derivative in (10): 

dq’+H(qo,  p ( q o ,  t ) ,  t ) .  
W q ,  r )  

a t  - I,, at 
Now 

where dqldt and dpldt denote the rates of change along trajectories passing through q, p 
at t, and aplaq denotes the slope of %,(P) at q ;  the geometry of these derivatives is 
shown on figure 2, from which the truth of (19) is evident. Use of Hamilton’s equations 
of motion now gives 

(20) 
ap(q, t )  aH(q, P(d t ) ) .  t )  aP aH(q, P(4, t ) ,  t )  dH(q, p(q, t ) ,  t )  = -  -- -- -- 

at  a4 a4 aP dq 
This makes the first term in (18) the integral of a derivative, so that 
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P I  

9,P 
,9 

Figure 2. Geometry of derivatives describing slope and change of the curve %,(P). 

which on substitution into (18) shows that (16) does indeed satisfy the Hamilton-Jacobi 
equation. Dr J H Hannay (private communication) points out that an easy way to derive 
(16) is by integrating S in 4, t space first from t = 0 to f keeping 4 constant and equal to 
qo, and then from qo to 4 keeping t constant. 

Now that we have the semiclassical wavefunction given by equations (13) and (16), 
the next step is to use it to construct the Wigner function W(4, p ,  f ;  P*) in phase space. 

4. Wigner’s function 

From the semiclassical wavefunction r / l  given by (13) we can construct the phase space 
distribution W(4, p ,  f ;  P*) of Wigner (1932). This is defined as 

W(q,p ,  t ;  P*)=- j” e x p ( - 3 r / l ( q  +x, t ;  ~ * ) r / l * ( 4  -x, t ;  P*). 
T A  -m 

W has the useful property of projecting along p to give the 4 space probability density: 

Similarly, projection along q gives the momentum space probability density. 
The obvious way to generate a semiclassical approximation to W is to use the 

method of stationary phase for the integration over X in (22), after substituting (13) and 
(16). At first sight it seems that the multivaluedness of p as a function of 4 on the 
classical curve %,(P*) will cause great complications. However, these can be avoided 
by first evaluating (22) at points 4, p close to % but not close to any caustics 4,. The 
resulting expression will then be rewritten so as to depend on the geometry of % in a 
manner manifestly symmetric in 4 and p ,  giving a W easily globalised to be valid near 
turning points and also far from %. 

Under the stated assumptions, the integral to be evaluated for W is 
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Because q is far from any qr, it is legitimate to use here the semiclassical approximation 
(13); and because 4, p is close to Ce, only one branch j of the inverse function p ( q ,  t ;  9)) 
will contribute stationary points to the integrand, so that in writing (24) we have 
dropped the suffix j .  Note that because Wigner’s function (22) contains the product of a 
cc/ and a $* the following quantities do not appear in (24): the phases 4i in (13), the 
constant qo in the action (16), and the explicitly time-dependent second term in (16). 

The stationary-phase evaluation of (24) proceeds exactly as described in P 4 of Berry 
(1977a) for the special case of eigenstates of a time-independent Hamiltonian. There- 
fore we shall simply state the results of the analysis; readers can easily check the details. 
Assume first that q, p lies on the concave side of V (figure 3) in a region where Ce has no 
inflection points. Then the exponent in (24) is stationary for the two values X =  
*Xo(q, p )  corresponding to the end-points 1 and 2 (figure 3) of that chord of Se whose 
midpoint is q, p .  We employ the convention that 2 follows 1 moving clockwise around 
Ce. The phase in (24) has the stationary value 

9+X0(4. PI 

s-Xo(s ,  P )  
5 dp’p(qf,r;9)*)-2pXo=A(q,p,t), (25) 

where A(q, p ,  t )  is the (positive) area (shaded in figure 3) between Ce,(S*) and the chord 
12. 

As 4, p moves onto V the two two stationary points 1 and 2 coalesce, thus 
invalidating the ordinary method of stationary phase. However, the more sophisticated 
method of Chester et a1 (1957) can be applied to yield an approximation for W in terms 
of the Airy function (Abramowitz and Stegun 1964). This is uniformly valid, and 
applies not only as 4, p moves onto V but also when 4, p lies on the convex side of Ce, 
where the stationary values Xo and the area A(q, p ,  t )  are imaginary. The resulting 
formula for W involves the geometry of the family of curves near Ce not only through 
the area A(4, p ,  t )  but also through the rates of change of the parameter 9, considered 
as a function S(q, p )  as q and p are varied from the stationary points 1 and 2. To express 
this we shall use the abbreviated notation exemplified by 

pq(1) (aP(q’, ~ ’ ) / a ~ l ’ ) q * = q - ~ ~ ( q ,  p), p’=p(q-xo(q.  p). r ;  9’). (26) 
In terms of these quantities, W is given by 

P A  

I I I 

I I 
I 
I 

I I 
I 

I > 9  
Q -xo 9 9 +xo 

I I I 

I I 
I 
I 

I I 
I 

I > 9  
Q -xo 9 9 +xo 

Figure 3. Chord construction for area A governing oscillations of Wigner’s function at 4 p  at 
time I. 
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This semiclassical limiting form of Wigner’s function is our central result. It is rich 
with interesting properties which will now be summarised (for more detailed discussion 
see 0 4 of Berry 1977a). 

(A)  W attains large positive values, of order K213, close to the classical curve 
Vl(9*) .  (The actual maximum occurs a distance of order h213 away from % on its 
concave side.) 

( B )  Very close to V. a tedious expansion yields the ‘transitional approximation’ 

where 

B ( ~ , P ) ~ P ~ ~ ~ ~ + S ~ ~ ~ ~  -2PPqPp9,, (29) 
all derivatives being evaluated at 4, p .  B remains finite as 4, p moves onto %. 

obtained from (28) by letting h + 0 and using the result 
(C) The classical limit of W (as opposed to its semiclassical limiting form) can be 

(30) 

This gives the simple expression (Heller 1977) 

Wclassical(4, P ,  t ;  9*) = I 0 6 ( 9 ( 4 ,  P )  - g*). (31) 
(In the special case where 9 represents action this formula was derived earlier by one of 
us (Balazs 1963, unpublished). On projection down p (cf. Berry 1977b), (31) recaptures 
the classical probability density / $ I 2 ,  which is a sum of terms of the form ( 5 ) .  

( D )  On the concave side of % the Airy function in (27) has negative argument, so 
that W oscillates as A(q, p ,  t )  passes through multiples of h. Thus V is decorated with 
fringes (first described with a formula valid for small p by Balazs and Zipfel 1973). 

( E )  On the convex side of % the Airy function has positive argument, and W decays 
exponentially away from % (Balazs and Zipfel 1973). 

(F) The approximation (27) shares with the exact Wigner function the property of 
being formally symmetric in 4 and p ,  which is reassuring in view of the unsymmetrical 
manner of its derivation from (22) and (13). This symmetry means that the approxima- 
tion for W is valid where its derivation is not, namely near turning points qp When 
projected down p ,  (27) gives not the original WKB approximation (13) for I4(4, t ;  P*)I2 
but the correct uniform approximation of Airy type (Langer 1937, Berry and Mount 
1972) smoothly valid through qp 

(G) The form of (27) shows that in this uniform approximation W(q, p ,  t ;  S*) 
depends only on the form of the curves g r ( S )  for P near 9*, and not on the classical 
trajectory passing through 4, p at t. 

( H )  If the quantum state 4 is normalised to unity, the approximation (27) satisfies 
to lowest order in h the following exact relations (Baker 1958): 

X X W X 

dq I-, dp W(q,  P )  = 1, I-, dq /-a dp W2(q,  P )  = h-’. (32) 

The result (27) gives a pleasant picture of the evolution of the quantum state: 
Wigner’s function hugs the evolving classical curve V r ( 9 * )  in an ‘adiabatic’ fashion, and 
decorates it with Airy fringes. Nevertheless there are cases where it must be interpreted 
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carefully. Consider the denominator in (27), as q, p varies (for fixed t ) .  As was shown in 
9 5 of Berry (1977a), this vanishes on a catastrophe set 2 (figure 4) consisting of all q p  at 
the mid-points of chords joining points on % with parallel tangents; for 4p  on 2, two or 
more stationary points Xo of the integrand in (24) coalesce. Part of 2 is V itself, where 
the ‘chords’ have zero length, so that their ends are the same point and hence obviously 
have parallel tangents. In this case the factor in the numerator of (27) vanishes as 
well, in such a way as to keep W finite-this is just another way way of saying that the 
Airy approximation is uniform across V. However, there are parts of 2 not on V, and 
on these curves (27) breaks down. 

Figure 4. Catastrophe set 2, i.e. locus (broken curves) of mid-points of lines joining parallel 
tangents of %,(B*) (full curve) on which the ‘geometric’ expression (27) for Wigner’s 
function breaks down. 

Such parts of 2 are of two sorts (both shown on figure 4): lines connecting inflections 
of %, and lines that need not encounter V. Further refinements of the method of 
stationary phase are required to evaluate W on or close to 2 (Berry 1977a), with the 
result that ] WI rises to large values (typically O(K’’~)). However, W oscillates along 
such 2 not on %‘, so that when h = 0 the limit is zero and not the delta-function (31) 
(which arises because of ?2 the function W does not oscillate but remains positive). We 
emphasise that such complications concern only the evaluation of the integral (24) and 
do not indicate a breakdown of the basic WKB approximation of 0 3. As time proceeds, 
however, it may happen that the spatial variation of H causes the WKB approximation 
to break down through a quite different cause, as will now be explained. 

5. Whorls and tendrils 

Over long times the classical motion may cause the curve Vc to convolute into very 
complicated shapes, and we expect such asymptotic complication to be the rule rather 
than the exception. In this section we shall argue that there are two principal forms of 
complexity, for which we shall introduce the terms ‘whorl’ and ‘tendril’, and in the next 
section we shall study the effects of whorls and tendrils on the evolution of the quantum 
state 4. 

In the case we shall consider, for which we can understand the main features of the 
evolution of V as t + cy), the Hamiltonian H describes a stationary system perturbed by 
a periodic force with period T (this includes the simple case where H is time- 
independent). Then snapshots of the phase plane at times 0, T, 2 T, . . . correspond to 
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successive maps A of q p  onto itself. By Liouville’s theorem A is area-preserving, and 
much is known about such maps; for reviews see Arnol’d and Avez (1968), Berry 
(1978), Ford (1975), Moser (1973). We intend to publish a detailed study (Berry et a1 
1979) of the quantisation of discrete-time maps of the q p  plane (‘quantum maps’), in 
which the evolution of curves will play a large part; therefore we confine ourselves here 
to summarising our principal conclusions and conjectures. 

The evolution of Ce depends on the fixed points and invariant curves of A. A fixed 
point 4 p  maps onto itself after a finite number of iterations of A, i.e. after a time nT ,  
where n is an integer. Typical maps have infinite hierarchies of elliptic (stable) and 
hyperbolic (unstable) fixed points. An invariant curve maps onto itself under A. Figure 
5 shows some fixed points and invariant curves of a map with three commonly occurring 
regimes. The first regime is the neighbourhood of the origin, where A has an elliptic 
fixed point surrounded by smooth invariant curves. Then comes the second regime: a 
set of elliptic and hyperbolic fixed points (three of each in this case). The elliptic points 
are surrounded by ‘islands’ of smooth invariant curves. The hyperbolic points have 
chaotic ‘area-filling’ invariant curves which generate stochasticity (pseudo-randomess) 
in these deterministic systems. This set of fixed points is surrounded by more smooth 
invariant curves surrounding the origin. There is a largest such curve, beyond which lies 
the third regime, where no invariant curves or fixed points exist, and all points escape to 
infinity under A. 

.- -. 

- - _ - -  
Figure 5. Invariant curves, and elliptic and hyperbolic fixed points, for a typical map. The 
evolution of the broken curves-Ceol, (eo2 and (eo3 is shown on  figure 6 .  

Now consider the fate of the three initial curves (eol, qo2 and CeO3 shown on figure 5. 
Ceol lies in the first regime but does not coincide with any invariant curve. Each point on 
Ce maps round its own invariant curve, and since different invariant curves have 
different ‘rotation numbers’ the effect is to wrap Ceol round the origin into the ‘spiral 
galaxy’ shown on figure 6(a).  We call the result of this wrapping a ‘whorl’. Whorls are 
not associated with classical stochasticity, and occur, for example, in the simple 
(integrable) case where H describes a time-independent, anharmonic oscillator and go 
corresponds to any initial quantum state that is not an eigenstate of H (if the oscillator is 
harmonic, WO simply rotates and whorls do not develop). 
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Figure 6. Evolution of curves Feol, VOZ and Feos on figure 5, showing development of whorls 
and tendrils. 

VO2 lies in the second regime and is drawn so that it passes through all six fixed 
points; these and only these points remain fixed as V evolves. Parts of Vo2 near the 
elliptic fixed points will develop whorls (figure 6b) .  Parts of VOZ near the hyperbolic 
fixed points will swing back and forth like the nearby convoluted invariant curves of A;  
we shall say that % grows ‘tendrils’ in such unstable regions of the phase plane. After 
many iterations % develops a fantastic complexity of whorls and tendrils as shown on 
figure 6(6) .  

VO3 lies in the third regime. All its points are unstable so there will be no whorls; 
instead %’ grows tendrils that reach out towards infinity (figure 6c ) .  The length of % 
grows rapidly while the area it encloses remains constant. 

The difference between a whorl and a tendril can be described in terms of inflection 
points (figure 7): if WO has no inflections, then as a whorl develops (figure 7 a )  only two 
inflections need form, while the development of a tendril (figure 7 b )  entails the 
formation of infinitely many inflections. Another difference is in the rate of growth of 
complexity, as measured say by the length L of %. For whorls (associated with stable 
trajectories) we expect L to increase linearly with time, while for tendrils (associated 

Figure 7. Development of (a) whorl, ( b )  tendrils. Inflections are indicated by dots. 
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with unstable trajectories) we expect L to increase exponentially fast. Finally, while 
whorls can be generated by a time-independent Hamiltonian, tendrils cannot; therefore 
the second and third regimes just discussed require a truly time-dependent Hamil- 
tonian. 

Preliminary computations by Dr M Tabor (see Berry et a1 1979) confirm this picture 
of the evolution of curves under generic mappings. It seems likely that whorls and 
tendrils will also form in more general cases where H(q ,  p ,  t )  does not have an 
associated discrete mapping. 

6. Quantum complexity 

It seems obvious that Wigner’s function W(q,  p ,  t )  cannot follow the increasing compli- 
cation of % as t + W. The reason is that quantum functions on phase space can surely 
have no detail on areas smaller than O(h),  whereas V develops structure down to 
arbitrarily fine scales. At some stage, therefore, there must be a transition to a new 
regime where the classical description is wrong, and W no longer follows the details of 
%. This new regime will be different when % grows tendrils from when W grows whorls. 
In both cases, however, we expect the outcome as t a3 to be a classical limit where W is 
positive in any region eventually filled by V, with everchanging superimposed quantum 
oscillations that may bear no relation to %. 

A literal application of the geometric formula (27) to these new regimes predicts 
that W is the resultant of many superposed Airy functions, since most points 4 p  lie at 
the midpoints of many chords, associated with different loops of e. We have not made a 
detailed study of what this resultant could look like, and in any case it is not clear 
whether (27) would remain valid in these regimes. However, it is probably legitimate to 
use (27) to discuss the transition to the new regimes. 

In the early stages of V’s convolution its loops will be well separated in a quantum 
sense; by this we mean that there will be many Airy oscillations from one loop of W 
before the next loop is encountered. Equation (27) can be applied, and yields a W 
dominated by the windings of Se. The increasing complication of % will reveal itself in 
the wavefunction 4(4, t )  through the increasing number of turning points 4, (where the 
tangent to V is perpendicular to the 4 axis). These turning points appear in pairs at the 
moments when an inflection of V turns so that its tangent lies parallel to the p axis. Such 
events are cusp catastrophes (Poston and Stewart 1978), and the corresponding 
behaviour of I) is described by the function of Pearcey (1946), which shows how two 
Airy functions are born as the new turning points separate. 

This proliferation of cusp catastrophes continues until the loops of Se are no longer 
well separated, that is, until the Airy oscillations associated with different loops can no 
longer be distinguished. The scale of the oscillations is h2’3, as is clear from equations 
(27) and (28), and we can use this fact to estimate the ‘transition time’ t, after which W 
no longer follows the details of V. Let D ( t )  be the distance between a typical pair of 
neighbouring loops of V at time t. Then t, satisfies 

Now, in Q 5 ,  we claimed that the length of V should increase linearly or exponentially 
with t for whorls or tendrils respectively. Since the area enclosed by %’ remains 
constant, this suggests that D ( t )  = O(t-’) for whorls and D(t )  = O(e-‘) for tendrils. 
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Therefore we predict 

t ,  = O ( V ~ ’ ~ )  (whorls) 

t = O(ln h-’) (tendrils) 
(34) 

for the time of transition to the new regimes of W. 
What are the new regimes like? Consider first the case where % convolutes into 

whorls, and recall that whorls form when Vo passes near an elliptic fixed point (of the 
mapping associated with the Hamiltonian) which is surrounded by smooth invariant 
curves. To find the form of W we restrict ourselves for simplicity to an initial curve like 
Vo1 on figure 5 ,  surrounding a single elliptic point, a situation shown in more detail on 
figure 8. Let the invariant curves be labelled by their actions I (defined as 1/27r times 
the phase-space area they enclose), and let positions on a given invariant curve be 
represented by the angle 8 (defined as the coordinate canonically conjugate to I ) .  For 
this particular family of curves, I and f3 are respectively the momentum 9” and 
coordinate Q defined in § 2. 8 is the invariant measure on the curve labelled I :  points 
uniformly distributed in 8 remain so as time proceeds. 

Figure 8. Initial curve %,, (thick curve) near an elliptic fixed point with invariant curves I 
(thin curves). 

Let us use I ,  0 to label points in the phase space q, p .  Then in the crudest classical 
approximation the initial form of Wigner’s function is given by equation (31) as 

Wciasslcai(8, L O ;  g*) = los(g(f3, I )  - g*) (35) 
where P(0, I) is that curve in the family Vo(9”) which passes through the point 8, I. Over 
long times each point of WO rotates many times around its invariant curve I. This means 
that when the whorl is fully developed at t = CO the classical limit of Wigner’s function 
depends only on I and can be obtained from (35) by averaging over 8 and thus 
smoothing away the caustic singularities of the projection of %’, which get ever denser as 
t + CO. This gives 

WcIwiuI,(I, t + C O ;  9”*) = - IO I 2sr d e  s (9 (e, I )  - @*). (36) 

In the original coordinates 4, p ,  I = I (4 ,  p )  is just the label of the invariant curve passing 
through q, p .  

27T 0 
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The integration in (36) is easily performed: the delta function means that only those 
angles 191 contribute which correspond to intersections of Uo(S*) (figure 8) with the 
invariant curve I (generally there is an even number of such intersections). Then 

As I approaches an invariant curve, labelled I,, which touches VO, two intersections 81 
coalesce, ag/ae  vanishes, and W as given by (37) diverges as II-I,I-’/2. (In the 
simplest case, illustrated on figure 8, this happens only for the limiting actions Imin and 
I,,, explored by Vo,) Therefore, as t + CO, W does indeed fill the region occupied by the 
whorl, not uniformly, however, but with singularities for those actions I ,  where VO 
touches an invariant curve. 

The result (37) is purely classical and does not exhibit the continual time variation 
that the quantum Wigner function must possess, even as t + CO, consequent upon the 
fact that the initial wavefunction is not an eigenstate of the Hamiltonian or any 
associated quantum map. In Appendix 1 we show that (37) can be derived on a simple 
model using quantum-mechanical arguments, provided the time variation of W is 
averaged away. 

Nevertheless, by using arguments explained by Berry (1977b), equation (37) can be 
used to get a good picture of the wavefunction $(q, t + CO;  9*) corresponding to a fully 
developed whorl. Consider first the locally averaged probability density I$/’. By 
equation (23) this is the projection of (37) onto the 4 axis, that is, the projection of the 
band of invariant curves between Imin and I,,,. The interesting 4 regions are near the 
singularities 4, of the projections of those invariant curves I ,  where Wclassical is singular. 
It is easy to see that 191’ has step discontinuities at 4 = 4,. For consider the simple case of 
I ,  =La, where the invar&curves are circles; then the radius ( p 2  + 42)1’2 of an I curve 
is J ~ I ,  so q, is simply J~I,,,, and for q near qc 

These step discontinuities are the analogues for a whorl as t+cO of the caustic 
divergences of 1 $ 1 2  that originate from singularities of the projection of Fer when t is not 
large. 

Now consider the pattern of oscillations of cl, near q as t + CO. This has a spectrum 
(Berry 1977b) consisting of wavelengths A = h / p  for all p for which W ( q ,  p )  exists at 4. 
In the present case the spectrum is dominated by those p values lying on the critical 
invariant curves I ,  for which W diverges. Therefore $(q, t +CO) for a whorl is the 
superposition of a few (somewhat spectrally impure) oscillatory contributions. 

Finally we enquire about W and $ near tendrils when t + CO. This is the stochastic 
case, where the classical motion is unstable. If the tendrils are trapped between 
invariant curves (as is the case with Ceo2 on figure 5 ) ,  then it is likely that they will 
eventually cover some region of phase space uniformly (or nearly so) in an ergodic 
fashion, and we assume that this is in fact what happens. This behaves under projection 
very differently from a whorl; the boundaries of the tendril-filled region project onto 
anticaustics (Berry 1977b) where W vanishes. A simple model example is a circular 
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patch p z  +4’ < r2  of tendrilled curve, which projects to 

where 0 denotes the unit step function. This result should be contrasted with (38). 
The pattern of oscillations of 4 as t +CC is also different for tendrils, since a 

uniformly filled region of phase space corresponds to a continuous spectrum of 
oscillations, corresponding to the range of p involved. Such a wave 4, made up of 
contributions with different wavelengths, will resemble a random function of 4. 

When the tendrils are not trapped between invariant curves they escape to infinity, 
like qO3 on figure 5 .  Then of course they can never fill any region in an ergodic fashion, 
and their convolutions diffuse outwards forever. The Wigner function must diffuse 
outwards too. As already explained, we expect W to follow %‘, until the transition time 
t, (equation 34). For t > t,, however, the tendrils will be very thin on the scale of h, and 
we no longer expect W to follow their details. Instead, the quantum W will diffuse 
outwards more slowly than than the classical probability. 

We think that this simple observation explains the results of computations by Casati 
et a l ( l979)  on the quantum-mechanical pendulum (free rotor with periodic coordinate 
q )  subjected to a regular succession of sudden impulses. The system evolves from some 
given initial state $(q, 0), and Casati et a1 computed the quantum expectation value 
E,,(t) of the energy at time t, as well as the corresponding classical energy E,,(t). They 
found that E,I and E,, increased in very similar fashion from 0 < t < 7, after whichE,,(t) 
increased much more slowly than ECl(t). It is tempting to identify 7 with our transition 
time t,. 

7. Conclusions 

One reason for studying these time-dependent problems is of course to make 
mathematical models for naturally occurring processes. Our main reason here, though, 
is that (as realised by Casati et a1 1979) one-dimensional non-stationary problems 
provide simple systems for which to study the quantum consequences of the transition 
from classically integrable to classically non-integrable motion. Previous studies 
(Percival 1973, Pomphrey 1974, Berry 1977a, b) have been restricted to bound states 
of stationary systems, for which the simplest case has two degrees of freedom so that 
phase space is four-dimensional and not so amenable to geometric intuition as the case 
we have treated here. 

Our arguments about the way details of VI  get lost in the transition to new regimes as 
t + CO provide a nice illustration of the different roles Planck’s constant h can play in 
semiclassical mechanics (Berry 1977b, 1978). Before the transition, i.e. for t c t, 
(equation 34)), h imposes oscillatory quantum detail on a W and l4lZ which otherwise jt 
merely the classical curve %I and its projection. This is not surprising-after all h is an 
extra parameter not present in classical mechanics, and we expect it to describe a 
greater richness of behaviour. After the transition, however, h acts quite differently: it 
smooths away the details of classical fine structure (whorls and tendrils) which would 
otherwise develop as t + 00 down to arbitrarily fine scales. 

It would be highly desirable to test the conjectures presented here, either numeric- 
ally or, preferably, with the aid of exactly soluble models. A promising approach to 
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these problems is based on the observation that the main features of time-dependent 
problems (evolution of curves Fe, development of asymptotic complication in the form 
of whorls and tendrils, etc) are present in discrete-time, area-preserving maps of the 
plane. It turns out that these can often be quantised directly, and we are making the 
resulting 'quantum maps' the subject of a detailed study (Berry et a1 1979). 
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Appendix 1. Wigner's function for fully developed whorls 

Here we give a quantum-mechanical derivation of the classical limit (37) of 
W(4, p ,  t ;  9*) for a model system where an exact formal solution exists. This is the case 
of a time-independent Hamiltonian k corresponding to a classical anharmonic oscil- 
lator H(q, p )  with an elliptic fixed point at the origin (i.e. the contours of H surround 
q = p = 0). Let the eigenstates of H (assumed non-degenerate) be IC$,,), i.e. 

= EnIC$,), (Al .1)  

be now denoted by ]Go), and let the initial state $(q, 0;  P*) (which is not one of the 
Then the evolving state $(q,  t ;  P*) is given exactly by 

W is defined by (22), and for the state (A1.2) this gives 

W(q,  p ,  t ;  9*) 

= l(4n1$~)12 Wn(q, p )  + terms oscillating with t, 
n 

(A1.2) 

(A1.3) 

where Wn denotes the (time-independent) Wigner function for the state I&). The 
slowest oscillations have period h/(E,,+, -En) ,  which by the correspondence principle is 
closely approximated for large n by the period of the associated classical motion round 
the contours of H. Whorls, being generated by differences in classical periods, develop 
over times much longer than this. Averaging away these 'classical' oscillations, as well 
as the faster quantum oscillations from levels E, and E, that are not neighbouring, 
gives a time-independent Wigner function whose classical limit we now examine. 

By a well known semiclassical rule, the nth eigenstate 14") is associated with the 
contour (invariant curve) of H whose action ( 1 / 2 ~  times area in phase space) is 

I" = ( n  +$,k (A1.4) 
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By equation (3 1)  with appropriate normalisation the classical Wigner function W,, of 

Wfl (4 , e )=S(I (q , e ) - I f l ) /2 . r r .  (A1.5) 

Now we replace the summation over n in (A1.3) by an integration over I,,, and perform 
this using the delta function (A1.5). With an obvious change of notation for IC$,,) this 
gives 

I&) is 

so that the limiting Wigner function for the fully developed whorl is simply the square of 
the matrix element between I+,,) and a suitably chosen member of the set I&). 

To evaluate the matrix element we employ WKB approximations for + and 4* ,  and 
the method of stationary phase for the integration over 4’. All discontinuous phases will 
be neglected since they only affect oscillatory contributions to (Al.6),  which will 
subsequently be ignored. For 9 the WKB approximation is given by (6), and for q5 by a 
similar expression with Io replaced by 1/2r (to ensure correct normalisation) and So 
(given by equation 3) replaced by 

(A1.7) 

where r ( q ;  I )  is one of the momentum values on the curve I at 4. Thus (A1.6) becomes 

(A1.8) 

Stationary points of the exponent lie at 4’ = ql, where 

These are the intersections of W0(B*) with the invariant curve I passing through the 
point 4, p where W is being evaluated. According to the method of stationary phase the 
integral over q is the sum of oscillatory contributions from each qr value. The 
non-oscillatory contribution to the square (A1.8) is 

(A1.lO) 

That this is indeed the same as (37) can be seen from the following series of symbolic 
manipulations (which can be written in an explicit notation although this is extremely 
tedious): 

(Al .  11) 



642 M V Berry and N L Balats 

In these equations 4 and p denote the rates of change of 4 and p along the classical 
orbit, w = aH/aI denotes the frequency of classical motion, and 0 is the angle coor- 
dinate, varying as ut + const. 
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